ENG  RUSTimus Online Judge
Online Judge
Задачи
Авторы
Соревнования
О системе
Часто задаваемые вопросы
Новости сайта
Форум
Ссылки
Архив задач
Отправить на проверку
Состояние проверки
Руководство
Регистрация
Исправить данные
Рейтинг авторов
Текущее соревнование
Расписание
Прошедшие соревнования
Правила
вернуться в форум

Обсуждение задачи 1352. Простые числа Мерсенна

How to solve this problem without cheating?
Послано Yaroslavtsev Grigory (SpbSPU) 22 мар 2005 04:24
Should I use some test of simplicity (from Cormen or somewhere else) or is there any better way for such numbers?
Re: How to solve this problem without cheating?
Послано KingPin 22 мар 2005 05:35
If someone knows how to solve this proble without
cheatin' (if carefull reading of the definition is a cheat) then he can get a lot of money... :)
Re: How to solve this problem without cheating?
Послано Yaroslavtsev Grigory (SpbSPU) 22 мар 2005 13:27
Sorry, I understood after all, as for me I just found all the numbers in the Internet:)
Re: How to solve this problem without cheating?
Послано Neumann 27 мар 2005 18:08
I don't think it is possible to solve it without cheating,
otherwise, why now the largest one is only 43th?

Any way, you can get most of the ans in the text, except 3~8...
-~+~-
Послано AzuReVaPouR 28 апр 2005 18:22
I agree
Interesting
Послано TheBeet 9 июн 2005 06:06
Interesting
Re: How to solve this problem without cheating?
Послано Vladimir Yakovlev (USU) 9 июн 2005 12:24
Of course, you cannot solve it without "cheating".
The most powerful tests work for months to test one number!

You already have all numbers written in the text - why do you think it is cheating?
And it's easy to find the rest - up to 7-th. It's enough to test all numbers 2^p-1 up to 2^30-1 (only 30 numbers!) using bruteforce.
How to solve this problem without cheating?
Послано botl_ayhan 20 янв 2006 18:12
its just impossible to calculate it in 1 second.
Re: How to solve this problem without cheating?
Послано 2rf 8 авг 2007 21:48
If using Wikipedia and OEIS aren't cheating I know how to do it)
Re: How to solve this problem without cheating?
Послано flx4076 2 авг 2008 20:31
I wonder , who can?
Re: How to solve this problem without cheating?
Послано Whyyes 13 авг 2016 19:28
2rf писал(a) 8 августа 2007 21:48
If using Wikipedia and OEIS aren't cheating I know how to do it)
Using Wikipedia and OEIS may be cheating, but using the answers already in the problem definition definitely isn't.