ENG  RUSTimus Online Judge
Online Judge
Задачи
Авторы
Соревнования
О системе
Часто задаваемые вопросы
Новости сайта
Форум
Ссылки
Архив задач
Отправить на проверку
Состояние проверки
Руководство
Регистрация
Исправить данные
Рейтинг авторов
Текущее соревнование
Расписание
Прошедшие соревнования
Правила

1055. Combinations

Ограничение времени: 1.0 секунды
Ограничение памяти: 64 МБ

Вступление

As you have known MMM corporation lab researches the matter of haricot proportions in soup For every day. As we wrote in the previous problem (T) the ladle is placed down into the soup pan. But now we are not interested in the form and linear sizes of the ladle. This time the ladle holds exactly M haricot seeds of N got into the pan. All the seeds are of different size.
Experimenters calculate the quantity of possible methods to proportion M seeds in the pan. Requisite quantity of methods is calculated with the formula: C = N!/(M!·(NM)!). The main feature of these experiments is the quantity of different prime divisors of number C.
Example. N = 7, M = 3. C = 7!/(3!*4!) = 5040/(6*24) = 35 = 5*7. This example shows that the quantity of different prime divisors is 2.
Lest money would be spent for programmer, MMM corporation board decided to make necessary estimating during trial tour of quarterfinal world programming contest in Rybinsk.

Задача

Thus, your aim is to find the quantity of different prime divisors of number C.

Исходные данные

Input contains integers N and M. You may assume that 1 ≤ M < N ≤ 50000.

Результат

Output should contain one integer.

Пример

исходные данныерезультат
7 3
2
Источник задачи: Rybinsk State Avia Academy