ENG  RUS Timus Online Judge
Online Judge
Problems
Authors
Online contests
Site news
Webboard
Problem set
Submit solution
Judge status
Guide
Register
Authors ranklist
Current contest
Scheduled contests
Past contests
Rules

## 1163. Chapaev

Time limit: 1.0 second
Memory limit: 64 MB
Legendary divisional commander Vasiliy I. Chapaev was fond of playing this beautiful game with his aide-de-camp Petka during their (scanty) spare time. The game is played as follows. There are eight white and eight red draughts on the board at the beginning of the game. The red side starts the game by making the first turn. The turn consists of selecting an arbitrary draught of player’s colour and pushing it with a flick into a certain direction. Then this draught begins to move in this direction until it completely falls off the board. If it hits or even just touches another draught of any colour during the movement, the latter is immediately removed from the board being considered killed. In any case the moving draught continues its movement without changing its speed or direction. After the moving draught has completed its movement across the board (has fallen off) the other player has to make his turn. If there are no draughts of player’s colour left he is considered to lose the game.
The historians have a record of an initial position in one of such games. Unfortunately, the result of this game is unknown. Your task is to establish the truth taking for granted that both Chapaev and Petka always used the optimal strategy.

### Input

Each of two lines contains eight pairs of numbers - the coordinates of centres of red and white draughts respectively. The draughts are considered to be cylinders of radius 0.4 and height 0.15. The coordinates are calculated so that the board is a square 8x8 with vertices (0, 0), (0, 8), (8, 0) and (8, 8). There will be no draught that overlaps or touches another one. Also each piece in the initial position is completely contained within the limits of the board.

### Output

Output RED or WHITE corresponding to the winning side.

### Sample

inputoutput
```0.5 7.5 1.5 7.5 2.5 7.5 3.5 7.5 4.5 7.5 5.5 7.5 6.5 7.5 7.5 7.5
0.5 0.5 1.5 0.5 2.5 0.5 3.5 0.5 4.5 0.5 5.5 0.5 6.5 0.5 7.5 0.5```
`RED`
Problem Author: Nick Durov
Problem Source: ACM ICPC 2001. Northeastern European Region, Northern Subregion