art.estimators.classification
¶
Classifier API for applying all attacks. Use the Classifier
wrapper to be able to apply an attack to a
preexisting model.
Mixin Base Class Classifier¶
Mixin Base Class Class Gradients¶
- class art.estimators.classification.ClassGradientsMixin¶
Mixin abstract base class defining classifiers providing access to class gradients. A classifier of this type can be combined with certain white-box attacks. This mixin abstract base class has to be mixed in with class Classifier.
- abstract class_gradient(x: numpy.ndarray, label: Optional[Union[int, List[int]]] = None, **kwargs) numpy.ndarray ¶
Compute per-class derivatives w.r.t. x.
- Return type
ndarray
- Parameters
x (np.ndarray or pandas.DataFrame) – Samples.
label – Index of a specific per-class derivative. If an integer is provided, the gradient of that class output is computed for all samples. If multiple values as provided, the first dimension should match the batch size of x, and each value will be used as target for its corresponding sample in x. If None, then gradients for all classes will be computed for each sample.
- Returns
Gradients of input features w.r.t. each class in the form (batch_size, nb_classes, input_shape) when computing for all classes, otherwise shape becomes (batch_size, 1, input_shape) when label parameter is specified.
BlackBox Classifier¶
- class art.estimators.classification.BlackBoxClassifier(predict_fn: Union[Callable, Tuple[numpy.ndarray, numpy.ndarray]], input_shape: Tuple[int, ...], nb_classes: int, clip_values: Optional[CLIP_VALUES_TYPE] = None, preprocessing_defences: Optional[Union[Preprocessor, List[Preprocessor]]] = None, postprocessing_defences: Optional[Union[Postprocessor, List[Postprocessor]]] = None, preprocessing: PREPROCESSING_TYPE = (0.0, 1.0), fuzzy_float_compare: bool = False)¶
Class for black-box classifiers.
- __init__(predict_fn: Union[Callable, Tuple[numpy.ndarray, numpy.ndarray]], input_shape: Tuple[int, ...], nb_classes: int, clip_values: Optional[CLIP_VALUES_TYPE] = None, preprocessing_defences: Optional[Union[Preprocessor, List[Preprocessor]]] = None, postprocessing_defences: Optional[Union[Postprocessor, List[Postprocessor]]] = None, preprocessing: PREPROCESSING_TYPE = (0.0, 1.0), fuzzy_float_compare: bool = False)¶
Create a Classifier instance for a black-box model.
- Parameters
predict_fn – Function that takes in an np.ndarray of input data and returns the one-hot encoded matrix of predicted classes or tuple of the form (inputs, labels) containing the predicted labels for each input.
input_shape (
Tuple
) – Size of input.nb_classes (
int
) – Number of prediction classes.clip_values – Tuple of the form (min, max) of floats or np.ndarray representing the minimum and maximum values allowed for features. If floats are provided, these will be used as the range of all features. If arrays are provided, each value will be considered the bound for a feature, thus the shape of clip values needs to match the total number of features.
preprocessing_defences – Preprocessing defence(s) to be applied by the classifier.
postprocessing_defences – Postprocessing defence(s) to be applied by the classifier.
preprocessing – Tuple of the form (subtrahend, divisor) of floats or np.ndarray of values to be used for data preprocessing. The first value will be subtracted from the input. The input will then be divided by the second one.
fuzzy_float_compare (
bool
) – If predict_fn is a tuple mapping inputs to labels, and this is True, looking up inputs in the table will be done using numpy.isclose. Only set to True if really needed, since this severely affects performance.
- property clip_values: Optional[CLIP_VALUES_TYPE]¶
Return the clip values of the input samples.
- Returns
Clip values (min, max).
- compute_loss(x: numpy.ndarray, y: numpy.ndarray, **kwargs) numpy.ndarray ¶
Compute the loss of the estimator for samples x.
- Parameters
x (
ndarray
) – Input samples.y (
ndarray
) – Target values.
- Returns
Loss values.
- Return type
Format as expected by the model
- fit(*args, **kwargs)¶
Fit the classifier on the training set (x, y).
- Parameters
x – Training data.
y – Labels, one-vs-rest encoding.
kwargs – Dictionary of framework-specific arguments. These should be parameters supported by the fit_generator function in Keras and will be passed to this function as such. Including the number of epochs or the number of steps per epoch as part of this argument will result in as error.
- Raises
NotImplementedException – This method is not supported for black-box classifiers.
- get_params() Dict[str, Any] ¶
Get all parameters and their values of this estimator.
- Returns
A dictionary of string parameter names to their value.
- property input_shape: Tuple[int, ...]¶
Return the shape of one input sample.
- Returns
Shape of one input sample.
- property model¶
Return the model.
- Returns
The model.
- property nb_classes: int¶
Return the number of output classes.
- Returns
Number of classes in the data.
- predict(*args, **kwargs)¶
Perform prediction for a batch of inputs.
- Parameters
x – Input samples.
batch_size – Size of batches.
- Returns
Array of predictions of shape (nb_inputs, nb_classes).
- property predict_fn: Callable¶
Return the prediction function.
- Returns
The prediction function.
- save(filename: str, path: Optional[str] = None) None ¶
Save a model to file in the format specific to the backend framework. For Keras, .h5 format is used.
- Parameters
filename (
str
) – Name of the file where to store the model.path – Path of the folder where to store the model. If no path is specified, the model will be stored in the default data location of the library ART_DATA_PATH.
- Raises
NotImplementedException – This method is not supported for black-box classifiers.
- set_params(**kwargs) None ¶
Take a dictionary of parameters and apply checks before setting them as attributes.
- Parameters
kwargs – A dictionary of attributes.
BlackBox Classifier NeuralNetwork¶
- class art.estimators.classification.BlackBoxClassifierNeuralNetwork(predict_fn: Union[Callable, Tuple[numpy.ndarray, numpy.ndarray]], input_shape: Tuple[int, ...], nb_classes: int, channels_first: bool = True, clip_values: Optional[CLIP_VALUES_TYPE] = None, preprocessing_defences: Optional[Union[Preprocessor, List[Preprocessor]]] = None, postprocessing_defences: Optional[Union[Postprocessor, List[Postprocessor]]] = None, preprocessing: PREPROCESSING_TYPE = (0, 1), fuzzy_float_compare: bool = False)¶
Class for black-box neural network classifiers.
- __init__(predict_fn: Union[Callable, Tuple[numpy.ndarray, numpy.ndarray]], input_shape: Tuple[int, ...], nb_classes: int, channels_first: bool = True, clip_values: Optional[CLIP_VALUES_TYPE] = None, preprocessing_defences: Optional[Union[Preprocessor, List[Preprocessor]]] = None, postprocessing_defences: Optional[Union[Postprocessor, List[Postprocessor]]] = None, preprocessing: PREPROCESSING_TYPE = (0, 1), fuzzy_float_compare: bool = False)¶
Create a Classifier instance for a black-box model.
- Parameters
predict_fn – Function that takes in an np.ndarray of input data and returns the one-hot encoded matrix of predicted classes or tuple of the form (inputs, labels) containing the predicted labels for each input.
input_shape (
Tuple
) – Size of input.nb_classes (
int
) – Number of prediction classes.channels_first (
bool
) – Set channels first or last.clip_values – Tuple of the form (min, max) of floats or np.ndarray representing the minimum and maximum values allowed for features. If floats are provided, these will be used as the range of all features. If arrays are provided, each value will be considered the bound for a feature, thus the shape of clip values needs to match the total number of features.
preprocessing_defences – Preprocessing defence(s) to be applied by the classifier.
postprocessing_defences – Postprocessing defence(s) to be applied by the classifier.
preprocessing – Tuple of the form (subtrahend, divisor) of floats or np.ndarray of values to be used for data preprocessing. The first value will be subtracted from the input. The input will then be divided by the second one.
fuzzy_float_compare (
bool
) – If predict_fn is a tuple mapping inputs to labels, and this is True, looking up inputs in the table will be done using numpy.isclose. Only set to True if really needed, since this severely affects performance.
- property channels_first: bool¶
- Returns
Boolean to indicate index of the color channels in the sample x.
- property clip_values: Optional[CLIP_VALUES_TYPE]¶
Return the clip values of the input samples.
- Returns
Clip values (min, max).
- compute_loss(x: numpy.ndarray, y: numpy.ndarray, **kwargs) numpy.ndarray ¶
Compute the loss of the estimator for samples x.
- Parameters
x (
ndarray
) – Input samples.y (
ndarray
) – Target values.
- Returns
Loss values.
- Return type
Format as expected by the model
- fit(*args, **kwargs)¶
Fit the model of the estimator on the training data x and y.
- Parameters
x – Samples of shape (nb_samples, nb_features) or (nb_samples, nb_pixels_1, nb_pixels_2, nb_channels) or (nb_samples, nb_channels, nb_pixels_1, nb_pixels_2).
y (Format as expected by the model) – Target values.
batch_size – Batch size.
nb_epochs – Number of training epochs.
- fit_generator(generator: DataGenerator, nb_epochs: int = 20, **kwargs) None ¶
Fit the estimator using a generator yielding training batches. Implementations can provide framework-specific versions of this function to speed-up computation.
- Parameters
generator – Batch generator providing (x, y) for each epoch.
nb_epochs (
int
) – Number of training epochs.
- get_activations(x: numpy.ndarray, layer: Union[int, str], batch_size: int, framework: bool = False) numpy.ndarray ¶
Return the output of a specific layer for samples x where layer is the index of the layer between 0 and nb_layers - 1 or the name of the layer. The number of layers can be determined by counting the results returned by calling `layer_names.
- Return type
ndarray
- Parameters
x (
ndarray
) – Sampleslayer – Index or name of the layer.
batch_size (
int
) – Batch size.framework (
bool
) – If true, return the intermediate tensor representation of the activation.
- Returns
The output of layer, where the first dimension is the batch size corresponding to x.
- get_params() Dict[str, Any] ¶
Get all parameters and their values of this estimator.
- Returns
A dictionary of string parameter names to their value.
- property input_shape: Tuple[int, ...]¶
Return the shape of one input sample.
- Returns
Shape of one input sample.
- property layer_names: Optional[List[str]]¶
Return the names of the hidden layers in the model, if applicable.
- Returns
The names of the hidden layers in the model, input and output layers are ignored.
Warning
layer_names tries to infer the internal structure of the model. This feature comes with no guarantees on the correctness of the result. The intended order of the layers tries to match their order in the model, but this is not guaranteed either.
- loss(x: numpy.ndarray, y: numpy.ndarray, **kwargs) numpy.ndarray ¶
Compute the loss of the neural network for samples x.
- Parameters
x (
ndarray
) – Samples of shape (nb_samples, nb_features) or (nb_samples, nb_pixels_1, nb_pixels_2, nb_channels) or (nb_samples, nb_channels, nb_pixels_1, nb_pixels_2).y (
ndarray
) – Target values (class labels) one-hot-encoded of shape (nb_samples, nb_classes) or indices of shape (nb_samples,).
- Returns
Loss values.
- Return type
Format as expected by the model
- property model¶
Return the model.
- Returns
The model.
- property nb_classes: int¶
Return the number of output classes.
- Returns
Number of classes in the data.
- predict(*args, **kwargs)¶
Perform prediction for a batch of inputs.
- Parameters
x – Test set.
batch_size – Size of batches.
- Returns
Array of predictions of shape (nb_inputs, nb_classes).
- set_params(**kwargs) None ¶
Take a dictionary of parameters and apply checks before setting them as attributes.
- Parameters
kwargs – A dictionary of attributes.
Keras Classifier¶
- class art.estimators.classification.KerasClassifier(model: Union[keras.models.Model, tf.keras.models.Model], use_logits: bool = False, channels_first: bool = False, clip_values: Optional[CLIP_VALUES_TYPE] = None, preprocessing_defences: Optional[Union[Preprocessor, List[Preprocessor]]] = None, postprocessing_defences: Optional[Union[Postprocessor, List[Postprocessor]]] = None, preprocessing: PREPROCESSING_TYPE = (0.0, 1.0), input_layer: int = 0, output_layer: int = 0)¶
Wrapper class for importing Keras models.
- __init__(model: Union[keras.models.Model, tf.keras.models.Model], use_logits: bool = False, channels_first: bool = False, clip_values: Optional[CLIP_VALUES_TYPE] = None, preprocessing_defences: Optional[Union[Preprocessor, List[Preprocessor]]] = None, postprocessing_defences: Optional[Union[Postprocessor, List[Postprocessor]]] = None, preprocessing: PREPROCESSING_TYPE = (0.0, 1.0), input_layer: int = 0, output_layer: int = 0) None ¶
Create a Classifier instance from a Keras model. Assumes the model passed as argument is compiled.
- Parameters
model – Keras model, neural network or other.
use_logits (
bool
) – True if the output of the model are logits; false for probabilities or any other type of outputs. Logits output should be favored when possible to ensure attack efficiency.channels_first (
bool
) – Set channels first or last.clip_values – Tuple of the form (min, max) of floats or np.ndarray representing the minimum and maximum values allowed for features. If floats are provided, these will be used as the range of all features. If arrays are provided, each value will be considered the bound for a feature, thus the shape of clip values needs to match the total number of features.
preprocessing_defences – Preprocessing defence(s) to be applied by the classifier.
postprocessing_defences – Postprocessing defence(s) to be applied by the classifier.
preprocessing – Tuple of the form (subtrahend, divisor) of floats or np.ndarray of values to be used for data preprocessing. The first value will be subtracted from the input. The input will then be divided by the second one.
input_layer (
int
) – The index of the layer to consider as input for models with multiple input layers. The layer with this index will be considered for computing gradients. For models with only one input layer this values is not required.output_layer (
int
) – Which layer to consider as the output when the models has multiple output layers. The layer with this index will be considered for computing gradients. For models with only one output layer this values is not required.
- property channels_first: bool¶
- Returns
Boolean to indicate index of the color channels in the sample x.
- class_gradient(x: numpy.ndarray, label: Optional[Union[int, List[int]]] = None, training_mode: bool = False, **kwargs) numpy.ndarray ¶
Compute per-class derivatives w.r.t. x.
- Return type
ndarray
- Parameters
x (
ndarray
) – Sample input with shape as expected by the model.label – Index of a specific per-class derivative. If an integer is provided, the gradient of that class output is computed for all samples. If multiple values are provided, the first dimension should match the batch size of x, and each value will be used as target for its corresponding sample in x. If None, then gradients for all classes will be computed for each sample.
training_mode (
bool
) – True for model set to training mode and ‘False for model set to evaluation mode.
- Returns
Array of gradients of input features w.r.t. each class in the form (batch_size, nb_classes, input_shape) when computing for all classes, otherwise shape becomes (batch_size, 1, input_shape) when label parameter is specified.
- property clip_values: Optional[CLIP_VALUES_TYPE]¶
Return the clip values of the input samples.
- Returns
Clip values (min, max).
- compute_loss(x: numpy.ndarray, y: numpy.ndarray, reduction: str = 'none', **kwargs) numpy.ndarray ¶
Compute the loss of the neural network for samples x.
- Parameters
x (
ndarray
) – Samples of shape (nb_samples, nb_features) or (nb_samples, nb_pixels_1, nb_pixels_2, nb_channels) or (nb_samples, nb_channels, nb_pixels_1, nb_pixels_2).y (
ndarray
) – Target values (class labels) one-hot-encoded of shape (nb_samples, nb_classes) or indices of shape (nb_samples,).reduction (
str
) – Specifies the reduction to apply to the output: ‘none’ | ‘mean’ | ‘sum’. ‘none’: no reduction will be applied ‘mean’: the sum of the output will be divided by the number of elements in the output, ‘sum’: the output will be summed.
- Returns
Loss values.
- Return type
Format as expected by the model
- custom_loss_gradient(nn_function, tensors, input_values, name='default')¶
Returns the gradient of the nn_function with respect to model input
- Parameters
nn_function (a Keras tensor) – an intermediate tensor representation of the function to differentiate
tensors (list) – the tensors or variables to differentiate with respect to
input_values (list) – the inputs to evaluate the gradient
name (str) – The name of the function. Functions of the same name are cached
- Returns
the gradient of the function w.r.t vars
- Return type
np.ndarray
- fit(*args, **kwargs)¶
Fit the classifier on the training set (x, y).
- Parameters
x – Training data.
y – Target values (class labels) one-hot-encoded of shape (nb_samples, nb_classes) or index labels of shape (nb_samples,).
batch_size – Size of batches.
nb_epochs – Number of epochs to use for training.
kwargs – Dictionary of framework-specific arguments. These should be parameters supported by the fit_generator function in Keras and will be passed to this function as such. Including the number of epochs or the number of steps per epoch as part of this argument will result in as error.
- fit_generator(generator: DataGenerator, nb_epochs: int = 20, **kwargs) None ¶
Fit the classifier using the generator that yields batches as specified.
- Parameters
generator – Batch generator providing (x, y) for each epoch. If the generator can be used for native training in Keras, it will.
nb_epochs (
int
) – Number of epochs to use for training.kwargs – Dictionary of framework-specific arguments. These should be parameters supported by the fit_generator function in Keras and will be passed to this function as such. Including the number of epochs as part of this argument will result in as error.
- get_activations(x: numpy.ndarray, layer: Union[int, str], batch_size: int = 128, framework: bool = False) numpy.ndarray ¶
Return the output of the specified layer for input x. layer is specified by layer index (between 0 and nb_layers - 1) or by name. The number of layers can be determined by counting the results returned by calling layer_names.
- Return type
ndarray
- Parameters
x (
ndarray
) – Input for computing the activations.layer – Layer for computing the activations.
batch_size (
int
) – Size of batches.framework (
bool
) – If true, return the intermediate tensor representation of the activation.
- Returns
The output of layer, where the first dimension is the batch size corresponding to x.
- get_params() Dict[str, Any] ¶
Get all parameters and their values of this estimator.
- Returns
A dictionary of string parameter names to their value.
- property input_layer: int¶
The index of the layer considered as input for models with multiple input layers. For models with only one input layer the index is 0.
- Returns
The index of the layer considered as input for models with multiple input layers.
- property input_shape: Tuple[int, ...]¶
Return the shape of one input sample.
- Returns
Shape of one input sample.
- property layer_names: Optional[List[str]]¶
Return the names of the hidden layers in the model, if applicable.
- Returns
The names of the hidden layers in the model, input and output layers are ignored.
Warning
layer_names tries to infer the internal structure of the model. This feature comes with no guarantees on the correctness of the result. The intended order of the layers tries to match their order in the model, but this is not guaranteed either.
- loss_gradient(x: numpy.ndarray, y: numpy.ndarray, training_mode: bool = False, **kwargs) numpy.ndarray ¶
Compute the gradient of the loss function w.r.t. x.
- Return type
ndarray
- Parameters
x (
ndarray
) – Sample input with shape as expected by the model.y (
ndarray
) – Target values (class labels) one-hot-encoded of shape (nb_samples, nb_classes) or indices of shape (nb_samples,).training_mode (
bool
) – True for model set to training mode and ‘False for model set to evaluation mode.
- Returns
Array of gradients of the same shape as x.
- property model¶
Return the model.
- Returns
The model.
- property nb_classes: int¶
Return the number of output classes.
- Returns
Number of classes in the data.
- property output_layer: int¶
The index of the layer considered as output for models with multiple output layers. For models with only one output layer the index is 0.
- Returns
The index of the layer considered as output for models with multiple output layers.
- predict(*args, **kwargs)¶
Perform prediction for a batch of inputs.
- Parameters
x – Input samples.
batch_size – Size of batches.
training_mode – True for model set to training mode and ‘False for model set to evaluation mode.
- Returns
Array of predictions of shape (nb_inputs, nb_classes).
- save(filename: str, path: Optional[str] = None) None ¶
Save a model to file in the format specific to the backend framework. For Keras, .h5 format is used.
- Parameters
filename (
str
) – Name of the file where to store the model.path – Path of the folder where to store the model. If no path is specified, the model will be stored in the default data location of the library ART_DATA_PATH.
- set_params(**kwargs) None ¶
Take a dictionary of parameters and apply checks before setting them as attributes.
- Parameters
kwargs – A dictionary of attributes.
- property use_logits: bool¶
A boolean representing whether the outputs of the model are logits.
- Returns
a boolean representing whether the outputs of the model are logits.
MXNet Classifier¶
- class art.estimators.classification.MXClassifier(model: mx.gluon.Block, loss: Union[mx.nd.loss, mx.gluon.loss], input_shape: Tuple[int, ...], nb_classes: int, optimizer: Optional[mx.gluon.Trainer] = None, ctx: Optional[mx.context.Context] = None, channels_first: bool = True, clip_values: Optional[CLIP_VALUES_TYPE] = None, preprocessing_defences: Optional[Union[Preprocessor, List[Preprocessor]]] = None, postprocessing_defences: Optional[Union[Postprocessor, List[Postprocessor]]] = None, preprocessing: PREPROCESSING_TYPE = (0.0, 1.0))¶
Class for importing MXNet Gluon models.
- __init__(model: mx.gluon.Block, loss: Union[mx.nd.loss, mx.gluon.loss], input_shape: Tuple[int, ...], nb_classes: int, optimizer: Optional[mx.gluon.Trainer] = None, ctx: Optional[mx.context.Context] = None, channels_first: bool = True, clip_values: Optional[CLIP_VALUES_TYPE] = None, preprocessing_defences: Optional[Union[Preprocessor, List[Preprocessor]]] = None, postprocessing_defences: Optional[Union[Postprocessor, List[Postprocessor]]] = None, preprocessing: PREPROCESSING_TYPE = (0.0, 1.0)) None ¶
Initialize an MXClassifier object. Assumes the model passed as parameter is a Gluon model.
- Parameters
model – The Gluon model. The output of the model can be logits, probabilities or anything else. Logits output should be preferred where possible to ensure attack efficiency.
loss – The loss function for which to compute gradients for training.
input_shape (
Tuple
) – The shape of one input instance.nb_classes (
int
) – The number of classes of the model.optimizer – The optimizer used to train the classifier. This parameter is only required if fitting will be done with method fit.
ctx – The device on which the model runs (CPU or GPU). If not provided, CPU is assumed.
channels_first (
bool
) – Set channels first or last.clip_values – Tuple of the form (min, max) of floats or np.ndarray representing the minimum and maximum values allowed for features. If floats are provided, these will be used as the range of all features. If arrays are provided, each value will be considered the bound for a feature, thus the shape of clip values needs to match the total number of features.
preprocessing_defences – Preprocessing defence(s) to be applied by the classifier.
postprocessing_defences – Postprocessing defence(s) to be applied by the classifier.
preprocessing – Tuple of the form (subtrahend, divisor) of floats or np.ndarray of values to be used for data preprocessing. The first value will be subtracted from the input. The input will then be divided by the second one.
- property channels_first: bool¶
- Returns
Boolean to indicate index of the color channels in the sample x.
- class_gradient(x: numpy.ndarray, label: Optional[Union[int, List[int]]] = None, training_mode: bool = False, **kwargs) numpy.ndarray ¶
Compute per-class derivatives w.r.t. x.
- Return type
ndarray
- Parameters
x (
ndarray
) – Sample input with shape as expected by the model.label – Index of a specific per-class derivative. If an integer is provided, the gradient of that class output is computed for all samples. If multiple values as provided, the first dimension should match the batch size of x, and each value will be used as target for its corresponding sample in x. If None, then gradients for all classes will be computed for each sample.
training_mode (
bool
) – True for model set to training mode and ‘False for model set to evaluation mode.
- Returns
Array of gradients of input features w.r.t. each class in the form (batch_size, nb_classes, input_shape) when computing for all classes, otherwise shape becomes (batch_size, 1, input_shape) when label parameter is specified.
- property clip_values: Optional[CLIP_VALUES_TYPE]¶
Return the clip values of the input samples.
- Returns
Clip values (min, max).
- compute_loss(x: numpy.ndarray, y: numpy.ndarray, **kwargs) numpy.ndarray ¶
Compute the loss of the neural network for samples x.
- Parameters
x (
ndarray
) – Samples of shape (nb_samples, nb_features) or (nb_samples, nb_pixels_1, nb_pixels_2, nb_channels) or (nb_samples, nb_channels, nb_pixels_1, nb_pixels_2).y (
ndarray
) – Target values (class labels) one-hot-encoded of shape (nb_samples, nb_classes) or indices of shape (nb_samples,).
- Returns
Loss values.
- Return type
Format as expected by the model
- property ctx: mx.context.Context¶
Return the device on which the model runs.
- Returns
The device on which the model runs (CPU or GPU).
- fit(*args, **kwargs)¶
Fit the classifier on the training set (inputs, outputs).
- Parameters
x – Training data.
y – Target values (class labels) one-hot-encoded of shape (nb_samples, nb_classes) or index labels of shape (nb_samples,).
batch_size – Size of batches.
nb_epochs – Number of epochs to use for training.
kwargs – Dictionary of framework-specific arguments. This parameter is not currently supported for MXNet and providing it takes no effect.
- fit_generator(generator: DataGenerator, nb_epochs: int = 20, **kwargs) None ¶
Fit the classifier using the generator that yields batches as specified.
- Parameters
generator – Batch generator providing (x, y) for each epoch.
nb_epochs (
int
) – Number of epochs to use for training.kwargs – Dictionary of framework-specific arguments. This parameter is not currently supported for MXNet and providing it takes no effect.
- get_activations(x: numpy.ndarray, layer: Union[int, str], batch_size: int = 128, framework: bool = False) numpy.ndarray ¶
Return the output of the specified layer for input x. layer is specified by layer index (between 0 and nb_layers - 1) or by name. The number of layers can be determined by counting the results returned by calling layer_names.
- Return type
ndarray
- Parameters
x (
ndarray
) – Input for computing the activations.layer – Layer for computing the activations
batch_size (
int
) – Size of batches.framework (
bool
) – If true, return the intermediate tensor representation of the activation.
- Returns
The output of layer, where the first dimension is the batch size corresponding to x.
- get_params() Dict[str, Any] ¶
Get all parameters and their values of this estimator.
- Returns
A dictionary of string parameter names to their value.
- property input_shape: Tuple[int, ...]¶
Return the shape of one input sample.
- Returns
Shape of one input sample.
- property layer_names: List[str]¶
Return the hidden layers in the model, if applicable.
- Returns
The hidden layers in the model, input and output layers excluded.
Warning
layer_names tries to infer the internal structure of the model. This feature comes with no guarantees on the correctness of the result. The intended order of the layers tries to match their order in the model, but this is not guaranteed either.
- property loss: Union[mx.nd.loss, mx.gluon.loss]¶
Return the loss function.
- Returns
The loss function.
- loss_gradient(x: numpy.ndarray, y: numpy.ndarray, training_mode: bool = False, **kwargs) numpy.ndarray ¶
Compute the gradient of the loss function w.r.t. x.
- Return type
ndarray
- Parameters
x (
ndarray
) – Sample input with shape as expected by the model.y (
ndarray
) – Target values (class labels) one-hot-encoded of shape (nb_samples, nb_classes) or indices of shape (nb_samples,).training_mode (
bool
) – True for model set to training mode and ‘False for model set to evaluation mode.
- Returns
Array of gradients of the same shape as x.
- property model¶
Return the model.
- Returns
The model.
- property nb_classes: int¶
Return the number of output classes.
- Returns
Number of classes in the data.
- property optimizer: mx.gluon.Trainer¶
Return the optimizer used to train the classifier.
- Returns
The optimizer used to train the classifier.
- predict(*args, **kwargs)¶
Perform prediction for a batch of inputs.
- Parameters
x – Input samples.
batch_size – Size of batches.
training_mode – True for model set to training mode and ‘False for model set to evaluation mode.
- Returns
Array of predictions of shape (nb_inputs, nb_classes).
- save(filename: str, path: Optional[str] = None) None ¶
Save a model to file in the format specific to the backend framework. For Gluon, only parameters are saved in file with name <filename>.params at the specified path. To load the saved model, the original model code needs to be run before calling load_parameters on the generated Gluon model.
- Parameters
filename (
str
) – Name of the file where to store the model.path – Path of the folder where to store the model. If no path is specified, the model will be stored in the default data location of the library ART_DATA_PATH.
- set_params(**kwargs) None ¶
Take a dictionary of parameters and apply checks before setting them as attributes.
- Parameters
kwargs – A dictionary of attributes.
PyTorch Classifier¶
- class art.estimators.classification.PyTorchClassifier(model: torch.nn.Module, loss: torch.nn.modules.loss._Loss, input_shape: Tuple[int, ...], nb_classes: int, optimizer: Optional[torch.optim.Optimizer] = None, use_amp: bool = False, opt_level: str = 'O1', loss_scale: Optional[Union[str, float]] = 'dynamic', channels_first: bool = True, clip_values: Optional[CLIP_VALUES_TYPE] = None, preprocessing_defences: Optional[Union[Preprocessor, List[Preprocessor]]] = None, postprocessing_defences: Optional[Union[Postprocessor, List[Postprocessor]]] = None, preprocessing: PREPROCESSING_TYPE = (0.0, 1.0), device_type: str = 'gpu')¶
This class implements a classifier with the PyTorch framework.
- __init__(model: torch.nn.Module, loss: torch.nn.modules.loss._Loss, input_shape: Tuple[int, ...], nb_classes: int, optimizer: Optional[torch.optim.Optimizer] = None, use_amp: bool = False, opt_level: str = 'O1', loss_scale: Optional[Union[str, float]] = 'dynamic', channels_first: bool = True, clip_values: Optional[CLIP_VALUES_TYPE] = None, preprocessing_defences: Optional[Union[Preprocessor, List[Preprocessor]]] = None, postprocessing_defences: Optional[Union[Postprocessor, List[Postprocessor]]] = None, preprocessing: PREPROCESSING_TYPE = (0.0, 1.0), device_type: str = 'gpu') None ¶
Initialization specifically for the PyTorch-based implementation.
- Parameters
model – PyTorch model. The output of the model can be logits, probabilities or anything else. Logits output should be preferred where possible to ensure attack efficiency.
loss – The loss function for which to compute gradients for training. The target label must be raw categorical, i.e. not converted to one-hot encoding.
input_shape (
Tuple
) – The shape of one input instance.optimizer – The optimizer used to train the classifier.
use_amp (
bool
) – Whether to use the automatic mixed precision tool to enable mixed precision training or gradient computation, e.g. with loss gradient computation. When set to True, this option is only triggered if there are GPUs available.opt_level (
str
) – Specify a pure or mixed precision optimization level. Used when use_amp is True. Accepted values are O0, O1, O2, and O3.loss_scale – Loss scaling. Used when use_amp is True. If passed as a string, must be a string representing a number, e.g., “1.0”, or the string “dynamic”.
nb_classes (
int
) – The number of classes of the model.optimizer – The optimizer used to train the classifier.
channels_first (
bool
) – Set channels first or last.clip_values – Tuple of the form (min, max) of floats or np.ndarray representing the minimum and maximum values allowed for features. If floats are provided, these will be used as the range of all features. If arrays are provided, each value will be considered the bound for a feature, thus the shape of clip values needs to match the total number of features.
preprocessing_defences – Preprocessing defence(s) to be applied by the classifier.
postprocessing_defences – Postprocessing defence(s) to be applied by the classifier.
preprocessing – Tuple of the form (subtrahend, divisor) of floats or np.ndarray of values to be used for data preprocessing. The first value will be subtracted from the input. The input will then be divided by the second one.
device_type (
str
) – Type of device on which the classifier is run, either gpu or cpu.
- property channels_first: bool¶
- Returns
Boolean to indicate index of the color channels in the sample x.
- class_gradient(x: numpy.ndarray, label: Optional[Union[int, List[int]]] = None, training_mode: bool = False, **kwargs) numpy.ndarray ¶
Compute per-class derivatives w.r.t. x.
- Return type
ndarray
- Parameters
x (
ndarray
) – Sample input with shape as expected by the model.label – Index of a specific per-class derivative. If an integer is provided, the gradient of that class output is computed for all samples. If multiple values as provided, the first dimension should match the batch size of x, and each value will be used as target for its corresponding sample in x. If None, then gradients for all classes will be computed for each sample.
training_mode (
bool
) – True for model set to training mode and ‘False for model set to evaluation mode. Note on RNN-like models: Backpropagation through RNN modules in eval mode raises RuntimeError due to cudnn issues and require training mode, i.e. RuntimeError: cudnn RNN backward can only be called in training mode. Therefore, if the model is an RNN type we always use training mode but freeze batch-norm and dropout layers if training_mode=False.
- Returns
Array of gradients of input features w.r.t. each class in the form (batch_size, nb_classes, input_shape) when computing for all classes, otherwise shape becomes (batch_size, 1, input_shape) when label parameter is specified.
- property clip_values: Optional[CLIP_VALUES_TYPE]¶
Return the clip values of the input samples.
- Returns
Clip values (min, max).
- clone_for_refitting() art.estimators.classification.pytorch.PyTorchClassifier ¶
Create a copy of the classifier that can be refit from scratch. Will inherit same architecture, optimizer and initialization as cloned model, but without weights.
- Returns
new estimator
- compute_loss(x: Union[numpy.ndarray, torch.Tensor], y: Union[numpy.ndarray, torch.Tensor], reduction: str = 'none', **kwargs) Union[numpy.ndarray, torch.Tensor] ¶
Compute the loss.
- Parameters
x – Sample input with shape as expected by the model.
y – Target values (class labels) one-hot-encoded of shape (nb_samples, nb_classes) or indices of shape (nb_samples,).
reduction (
str
) – Specifies the reduction to apply to the output: ‘none’ | ‘mean’ | ‘sum’. ‘none’: no reduction will be applied ‘mean’: the sum of the output will be divided by the number of elements in the output, ‘sum’: the output will be summed.
- Returns
Array of losses of the same shape as x.
- compute_losses(x: Union[numpy.ndarray, torch.Tensor], y: Union[numpy.ndarray, torch.Tensor], reduction: str = 'none') Dict[str, Union[numpy.ndarray, torch.Tensor]] ¶
Compute all loss components.
- Return type
Dict
- Parameters
x – Sample input with shape as expected by the model.
y – Target values (class labels) one-hot-encoded of shape (nb_samples, nb_classes) or indices of shape (nb_samples,).
reduction (
str
) – Specifies the reduction to apply to the output: ‘none’ | ‘mean’ | ‘sum’. ‘none’: no reduction will be applied ‘mean’: the sum of the output will be divided by the number of elements in the output, ‘sum’: the output will be summed.
- Returns
Dictionary of loss components.
- property device: torch.device¶
Get current used device.
- Returns
Current used device.
- property device_type: str¶
Return the type of device on which the estimator is run.
- Returns
Type of device on which the estimator is run, either gpu or cpu.
- fit(*args, **kwargs)¶
Fit the classifier on the training set (x, y).
- Parameters
x – Training data.
y – Target values (class labels) one-hot-encoded of shape (nb_samples, nb_classes) or index labels of shape (nb_samples,).
batch_size – Size of batches.
nb_epochs – Number of epochs to use for training.
kwargs – Dictionary of framework-specific arguments. This parameter is not currently supported for PyTorch and providing it takes no effect.
- fit_generator(generator: DataGenerator, nb_epochs: int = 20, **kwargs) None ¶
Fit the classifier using the generator that yields batches as specified.
- Parameters
generator – Batch generator providing (x, y) for each epoch.
nb_epochs (
int
) – Number of epochs to use for training.kwargs – Dictionary of framework-specific arguments. This parameter is not currently supported for PyTorch and providing it takes no effect.
- get_activations(x: Union[numpy.ndarray, torch.Tensor], layer: Optional[Union[str, int]] = None, batch_size: int = 128, framework: bool = False) numpy.ndarray ¶
Return the output of the specified layer for input x. layer is specified by layer index (between 0 and nb_layers - 1) or by name. The number of layers can be determined by counting the results returned by calling layer_names.
- Return type
ndarray
- Parameters
x – Input for computing the activations.
layer – Layer for computing the activations
batch_size (
int
) – Size of batches.framework (
bool
) – If true, return the intermediate tensor representation of the activation.
- Returns
The output of layer, where the first dimension is the batch size corresponding to x.
- get_params() Dict[str, Any] ¶
Get all parameters and their values of this estimator.
- Returns
A dictionary of string parameter names to their value.
- property input_shape: Tuple[int, ...]¶
Return the shape of one input sample.
- Returns
Shape of one input sample.
- property layer_names: Optional[List[str]]¶
Return the names of the hidden layers in the model, if applicable.
- Returns
The names of the hidden layers in the model, input and output layers are ignored.
Warning
layer_names tries to infer the internal structure of the model. This feature comes with no guarantees on the correctness of the result. The intended order of the layers tries to match their order in the model, but this is not guaranteed either.
- property loss: torch.nn.modules.loss._Loss¶
Return the loss function.
- Returns
The loss function.
- loss_gradient(x: Union[numpy.ndarray, torch.Tensor], y: Union[numpy.ndarray, torch.Tensor], training_mode: bool = False, **kwargs) Union[numpy.ndarray, torch.Tensor] ¶
Compute the gradient of the loss function w.r.t. x.
- Parameters
x – Sample input with shape as expected by the model.
y – Target values (class labels) one-hot-encoded of shape (nb_samples, nb_classes) or indices of shape (nb_samples,).
training_mode (
bool
) – True for model set to training mode and ‘False for model set to evaluation mode. Note on RNN-like models: Backpropagation through RNN modules in eval mode raises RuntimeError due to cudnn issues and require training mode, i.e. RuntimeError: cudnn RNN backward can only be called in training mode. Therefore, if the model is an RNN type we always use training mode but freeze batch-norm and dropout layers if training_mode=False.
- Returns
Array of gradients of the same shape as x.
- property loss_scale: Union[float, str]¶
Return the loss scaling value.
- Returns
Loss scaling. Possible values for string: a string representing a number, e.g., “1.0”, or the string “dynamic”.
- property model: torch.nn.Module¶
Return the model.
- Returns
The model.
- property nb_classes: int¶
Return the number of output classes.
- Returns
Number of classes in the data.
- property opt_level: str¶
Return a string specifying a pure or mixed precision optimization level.
- Returns
A string specifying a pure or mixed precision optimization level. Possible values are O0, O1, O2, and O3.
- property optimizer: torch.optim.Optimizer¶
Return the optimizer.
- Returns
The optimizer.
- predict(*args, **kwargs)¶
Perform prediction for a batch of inputs.
- Parameters
x – Input samples.
batch_size – Size of batches.
training_mode – True for model set to training mode and ‘False for model set to evaluation mode.
- Returns
Array of predictions of shape (nb_inputs, nb_classes).
- reduce_labels(y: Union[numpy.ndarray, torch.Tensor]) Union[numpy.ndarray, torch.Tensor] ¶
Reduce labels from one-hot encoded to index labels.
- reset() None ¶
Resets the weights of the classifier so that it can be refit from scratch.
- save(filename: str, path: Optional[str] = None) None ¶
Save a model to file in the format specific to the backend framework.
- Parameters
filename (
str
) – Name of the file where to store the model.path – Path of the folder where to store the model. If no path is specified, the model will be stored in the default data location of the library ART_DATA_PATH.
- set_batchnorm(train: bool) None ¶
Set all batch normalization layers into train or eval mode.
- Parameters
train (
bool
) – False for evaluation mode.
- set_dropout(train: bool) None ¶
Set all dropout layers into train or eval mode.
- Parameters
train (
bool
) – False for evaluation mode.
- set_params(**kwargs) None ¶
Take a dictionary of parameters and apply checks before setting them as attributes.
- Parameters
kwargs – A dictionary of attributes.
- property use_amp: bool¶
Return a boolean indicating whether to use the automatic mixed precision tool.
- Returns
Whether to use the automatic mixed precision tool.
Query-Efficient Black-box Gradient Estimation Classifier¶
- class art.estimators.classification.QueryEfficientGradientEstimationClassifier(classifier: CLASSIFIER_CLASS_LOSS_GRADIENTS_TYPE, num_basis: int, sigma: float, round_samples: float = 0.0)¶
Implementation of Query-Efficient Black-box Adversarial Examples. The attack approximates the gradient by maximizing the loss function over samples drawn from random Gaussian noise around the input.
Paper link: https://arxiv.org/abs/1712.07113- __init__(classifier: CLASSIFIER_CLASS_LOSS_GRADIENTS_TYPE, num_basis: int, sigma: float, round_samples: float = 0.0) None ¶
- Parameters
classifier – An instance of a classification estimator whose loss_gradient is being approximated.
num_basis (
int
) – The number of samples to draw to approximate the gradient.sigma (
float
) – Scaling on the Gaussian noise N(0,1).round_samples (
float
) – The resolution of the input domain to round the data to, e.g., 1.0, or 1/255. Set to 0 to disable.
- class_gradient(x: numpy.ndarray, label: Optional[Union[int, List[int]]] = None, **kwargs) numpy.ndarray ¶
Compute per-class derivatives w.r.t. x.
- Return type
ndarray
- Parameters
x (
ndarray
) – Input with shape as expected by the classifier’s model.label – Index of a specific per-class derivative. If an integer is provided, the gradient of that class output is computed for all samples. If multiple values as provided, the first dimension should match the batch size of x, and each value will be used as target for its corresponding sample in x. If None, then gradients for all classes will be computed for each sample.
- Returns
Array of gradients of input features w.r.t. each class in the form (batch_size, nb_classes, input_shape) when computing for all classes, otherwise shape becomes (batch_size, 1, input_shape) when label parameter is specified.
- property clip_values: Optional[CLIP_VALUES_TYPE]¶
Return the clip values of the input samples.
- Returns
Clip values (min, max).
- compute_loss(x: numpy.ndarray, y: numpy.ndarray, **kwargs) numpy.ndarray ¶
Compute the loss of the estimator for samples x.
- Parameters
x (
ndarray
) – Input samples.y (
ndarray
) – Target values.
- Returns
Loss values.
- Return type
Format as expected by the model
- fit(*args, **kwargs)¶
Fit the classifier using the training data (x, y).
- Parameters
x – Features in array of shape (nb_samples, nb_features) or (nb_samples, nb_pixels_1, nb_pixels_2, nb_channels) or (nb_samples, nb_channels, nb_pixels_1, nb_pixels_2).
y – Target values (class labels in classification) in array of shape (nb_samples, nb_classes) in one-hot encoding format.
kwargs – Dictionary of framework-specific arguments.
- get_activations(x: numpy.ndarray, layer: Union[int, str], batch_size: int) numpy.ndarray ¶
Return the output of the specified layer for input x. layer is specified by layer index (between 0 and nb_layers - 1) or by name. The number of layers can be determined by counting the results returned by calling layer_names.
- Return type
ndarray
- Parameters
x (
ndarray
) – Input for computing the activations.layer – Layer for computing the activations.
batch_size (
int
) – Size of batches.
- Returns
The output of layer, where the first dimension is the batch size corresponding to x.
- get_params() Dict[str, Any] ¶
Get all parameters and their values of this estimator.
- Returns
A dictionary of string parameter names to their value.
- property input_shape: Tuple[int, ...]¶
Return the shape of one input sample.
- Returns
Shape of one input sample.
- loss_gradient(x: numpy.ndarray, y: numpy.ndarray, **kwargs) numpy.ndarray ¶
Compute the gradient of the loss function w.r.t. x.
- Return type
ndarray
- Parameters
x (
ndarray
) – Sample input with shape as expected by the model.y (
ndarray
) – Correct labels, one-vs-rest encoding.
- Returns
Array of gradients of the same shape as x.
- property model¶
Return the model.
- Returns
The model.
- property nb_classes: int¶
Return the number of output classes.
- Returns
Number of classes in the data.
- predict(*args, **kwargs)¶
Perform prediction of the classifier for input x. Rounds results first.
- Parameters
x – Features in array of shape (nb_samples, nb_features) or (nb_samples, nb_pixels_1, nb_pixels_2, nb_channels) or (nb_samples, nb_channels, nb_pixels_1, nb_pixels_2).
batch_size – Size of batches.
- Returns
Array of predictions of shape (nb_inputs, nb_classes).
- save(filename: str, path: Optional[str] = None) None ¶
Save a model to file specific to the backend framework.
- Parameters
filename (
str
) – Name of the file where to save the model.path – Path of the directory where to save the model. If no path is specified, the model will be stored in the default data location of ART at ART_DATA_PATH.
- set_params(**kwargs) None ¶
Take a dictionary of parameters and apply checks before setting them as attributes.
- Parameters
kwargs – A dictionary of attributes.
TensorFlow Classifier¶
- class art.estimators.classification.TensorFlowClassifier(input_ph: tf.Placeholder, output: tf.Tensor, labels_ph: Optional[tf.Placeholder] = None, train: Optional[tf.Tensor] = None, loss: Optional[tf.Tensor] = None, learning: Optional[tf.Placeholder] = None, sess: Optional[tf.Session] = None, channels_first: bool = False, clip_values: Optional[CLIP_VALUES_TYPE] = None, preprocessing_defences: Optional[Union[Preprocessor, List[Preprocessor]]] = None, postprocessing_defences: Optional[Union[Postprocessor, List[Postprocessor]]] = None, preprocessing: PREPROCESSING_TYPE = (0.0, 1.0), feed_dict: Optional[Dict[Any, Any]] = None)¶
This class implements a classifier with the TensorFlow framework.
- __init__(input_ph: tf.Placeholder, output: tf.Tensor, labels_ph: Optional[tf.Placeholder] = None, train: Optional[tf.Tensor] = None, loss: Optional[tf.Tensor] = None, learning: Optional[tf.Placeholder] = None, sess: Optional[tf.Session] = None, channels_first: bool = False, clip_values: Optional[CLIP_VALUES_TYPE] = None, preprocessing_defences: Optional[Union[Preprocessor, List[Preprocessor]]] = None, postprocessing_defences: Optional[Union[Postprocessor, List[Postprocessor]]] = None, preprocessing: PREPROCESSING_TYPE = (0.0, 1.0), feed_dict: Optional[Dict[Any, Any]] = None) None ¶
Initialization specific to TensorFlow models implementation.
- Parameters
input_ph – The input placeholder.
output – The output layer of the model. This can be logits, probabilities or anything else. Logits output should be preferred where possible to ensure attack efficiency.
labels_ph – The labels placeholder of the model. This parameter is necessary when training the model and when computing gradients w.r.t. the loss function.
train – The train tensor for fitting, including an optimizer. Use this parameter only when training the model.
loss – The loss function for which to compute gradients. This parameter is necessary when training the model and when computing gradients w.r.t. the loss function.
learning – The placeholder to indicate if the model is training.
sess – Computation session.
channels_first (
bool
) – Set channels first or last.clip_values – Tuple of the form (min, max) of floats or np.ndarray representing the minimum and maximum values allowed for features. If floats are provided, these will be used as the range of all features. If arrays are provided, each value will be considered the bound for a feature, thus the shape of clip values needs to match the total number of features.
preprocessing_defences – Preprocessing defence(s) to be applied by the classifier.
postprocessing_defences – Postprocessing defence(s) to be applied by the classifier.
preprocessing – Tuple of the form (subtrahend, divisor) of floats or np.ndarray of values to be used for data preprocessing. The first value will be subtracted from the input. The input will then be divided by the second one.
feed_dict – A feed dictionary for the session run evaluating the classifier. This dictionary includes all additionally required placeholders except the placeholders defined in this class.
- property channels_first: bool¶
- Returns
Boolean to indicate index of the color channels in the sample x.
- class_gradient(x: numpy.ndarray, label: Optional[Union[int, List[int]]] = None, training_mode: bool = False, **kwargs) numpy.ndarray ¶
Compute per-class derivatives w.r.t. x.
- Return type
ndarray
- Parameters
x (
ndarray
) – Sample input with shape as expected by the model.label – Index of a specific per-class derivative. If an integer is provided, the gradient of that class output is computed for all samples. If multiple values as provided, the first dimension should match the batch size of x, and each value will be used as target for its corresponding sample in x. If None, then gradients for all classes will be computed for each sample.
training_mode (
bool
) – True for model set to training mode and ‘False for model set to evaluation mode.
- Returns
Array of gradients of input features w.r.t. each class in the form (batch_size, nb_classes, input_shape) when computing for all classes, otherwise shape becomes (batch_size, 1, input_shape) when label parameter is specified.
- property clip_values: Optional[CLIP_VALUES_TYPE]¶
Return the clip values of the input samples.
- Returns
Clip values (min, max).
- compute_loss(x: numpy.ndarray, y: numpy.ndarray, reduction: str = 'none', **kwargs) numpy.ndarray ¶
Compute the loss of the neural network for samples x.
- Parameters
x (
ndarray
) – Samples of shape (nb_samples, nb_features) or (nb_samples, nb_pixels_1, nb_pixels_2, nb_channels) or (nb_samples, nb_channels, nb_pixels_1, nb_pixels_2).y (
ndarray
) – Target values (class labels) one-hot-encoded of shape (nb_samples, nb_classes) or indices of shape (nb_samples,).reduction (
str
) – Specifies the reduction to apply to the output: ‘none’ | ‘mean’ | ‘sum’. ‘none’: no reduction will be applied ‘mean’: Not supported ‘sum’: Not supported
- Returns
Loss values.
- Return type
Format as expected by the model
- property feed_dict: Dict[Any, Any]¶
Return the feed dictionary for the session run evaluating the classifier.
- Returns
The feed dictionary for the session run evaluating the classifier.
- fit(*args, **kwargs)¶
Fit the classifier on the training set (x, y).
- Parameters
x – Training data.
y – Target values (class labels) one-hot-encoded of shape (nb_samples, nb_classes) or index labels of shape (nb_samples,).
batch_size – Size of batches.
nb_epochs – Number of epochs to use for training.
kwargs – Dictionary of framework-specific arguments. This parameter is not currently supported for TensorFlow and providing it takes no effect.
- fit_generator(generator: DataGenerator, nb_epochs: int = 20, **kwargs) None ¶
Fit the classifier using the generator that yields batches as specified.
- Parameters
generator – Batch generator providing (x, y) for each epoch. If the generator can be used for native training in TensorFlow, it will.
nb_epochs (
int
) – Number of epochs to use for training.kwargs – Dictionary of framework-specific arguments. This parameter is not currently supported for TensorFlow and providing it takes no effect.
- get_activations(x: numpy.ndarray, layer: Union[int, str], batch_size: int = 128, framework: bool = False) numpy.ndarray ¶
Return the output of the specified layer for input x. layer is specified by layer index (between 0 and nb_layers - 1) or by name. The number of layers can be determined by counting the results returned by calling layer_names.
- Return type
ndarray
- Parameters
x (
ndarray
) – Input for computing the activations.layer – Layer for computing the activations.
batch_size (
int
) – Size of batches.framework (
bool
) – If true, return the intermediate tensor representation of the activation.
- Returns
The output of layer, where the first dimension is the batch size corresponding to x.
- get_params() Dict[str, Any] ¶
Get all parameters and their values of this estimator.
- Returns
A dictionary of string parameter names to their value.
- property input_ph: tf.Placeholder¶
Return the input placeholder.
- Returns
The input placeholder.
- property input_shape: Tuple[int, ...]¶
Return the shape of one input sample.
- Returns
Shape of one input sample.
- property labels_ph: tf.Placeholder¶
Return the labels placeholder of the model.
- Returns
The labels placeholder of the model.
- property layer_names: Optional[List[str]]¶
Return the names of the hidden layers in the model, if applicable.
- Returns
The names of the hidden layers in the model, input and output layers are ignored.
Warning
layer_names tries to infer the internal structure of the model. This feature comes with no guarantees on the correctness of the result. The intended order of the layers tries to match their order in the model, but this is not guaranteed either.
- property learning: tf.Placeholder¶
Return the placeholder to indicate if the model is training.
- Returns
The placeholder to indicate if the model is training.
- property loss: tf.Tensor¶
Return the loss function.
- Returns
The loss function.
- loss_gradient(x: numpy.ndarray, y: numpy.ndarray, training_mode: bool = False, **kwargs) numpy.ndarray ¶
Compute the gradient of the loss function w.r.t. x.
- Return type
ndarray
- Parameters
x (
ndarray
) – Sample input with shape as expected by the model.y (
ndarray
) – Target values (class labels) one-hot-encoded of shape (nb_samples, nb_classes) or indices of shape (nb_samples,).training_mode (
bool
) – True for model set to training mode and ‘False for model set to evaluation mode.
- Returns
Array of gradients of the same shape as x.
- property model¶
Return the model.
- Returns
The model.
- property nb_classes: int¶
Return the number of output classes.
- Returns
Number of classes in the data.
- property output: tf.Tensor¶
Return the output layer of the model.
- Returns
The output layer of the model.
- predict(*args, **kwargs)¶
Perform prediction for a batch of inputs.
- Parameters
x – Input samples.
batch_size – Size of batches.
training_mode – True for model set to training mode and ‘False for model set to evaluation mode.
- Returns
Array of predictions of shape (num_inputs, nb_classes).
- save(filename: str, path: Optional[str] = None) None ¶
Save a model to file in the format specific to the backend framework. For TensorFlow, .ckpt is used.
- Parameters
filename (
str
) – Name of the file where to store the model.path – Path of the folder where to store the model. If no path is specified, the model will be stored in the default data location of the library ART_DATA_PATH.
- property sess: tf.python.client.session.Session¶
Get current TensorFlow session.
- Returns
The current TensorFlow session.
- set_params(**kwargs) None ¶
Take a dictionary of parameters and apply checks before setting them as attributes.
- Parameters
kwargs – A dictionary of attributes.
- property train: tf.Tensor¶
Return the train tensor for fitting.
- Returns
The train tensor for fitting.
TensorFlow v2 Classifier¶
- class art.estimators.classification.TensorFlowV2Classifier(model: Callable, nb_classes: int, input_shape: Tuple[int, ...], loss_object: Optional[tf.keras.losses.Loss] = None, train_step: Optional[Callable] = None, channels_first: bool = False, clip_values: Optional[CLIP_VALUES_TYPE] = None, preprocessing_defences: Optional[Union[Preprocessor, List[Preprocessor]]] = None, postprocessing_defences: Optional[Union[Postprocessor, List[Postprocessor]]] = None, preprocessing: PREPROCESSING_TYPE = (0.0, 1.0))¶
This class implements a classifier with the TensorFlow v2 framework.
- __init__(model: Callable, nb_classes: int, input_shape: Tuple[int, ...], loss_object: Optional[tf.keras.losses.Loss] = None, train_step: Optional[Callable] = None, channels_first: bool = False, clip_values: Optional[CLIP_VALUES_TYPE] = None, preprocessing_defences: Optional[Union[Preprocessor, List[Preprocessor]]] = None, postprocessing_defences: Optional[Union[Postprocessor, List[Postprocessor]]] = None, preprocessing: PREPROCESSING_TYPE = (0.0, 1.0)) None ¶
Initialization specific to TensorFlow v2 models.
- Parameters
model (
Callable
) – a python functions or callable class defining the model and providing it prediction as output.nb_classes (
int
) – the number of classes in the classification task.input_shape (
Tuple
) – shape of one input for the classifier, e.g. for MNIST input_shape=(28, 28, 1).loss_object (tf.keras.losses) – The loss function for which to compute gradients. This parameter is applied for training the model and computing gradients of the loss w.r.t. the input.
train_step – A function that applies a gradient update to the trainable variables with signature train_step(model, images, labels).
channels_first (
bool
) – Set channels first or last.clip_values – Tuple of the form (min, max) of floats or np.ndarray representing the minimum and maximum values allowed for features. If floats are provided, these will be used as the range of all features. If arrays are provided, each value will be considered the bound for a feature, thus the shape of clip values needs to match the total number of features.
preprocessing_defences – Preprocessing defence(s) to be applied by the classifier.
postprocessing_defences – Postprocessing defence(s) to be applied by the classifier.
preprocessing – Tuple of the form (subtrahend, divisor) of floats or np.ndarray of values to be used for data preprocessing. The first value will be subtracted from the input. The input will then be divided by the second one.
- property channels_first: bool¶
- Returns
Boolean to indicate index of the color channels in the sample x.
- class_gradient(x: numpy.ndarray, label: Optional[Union[int, List[int]]] = None, training_mode: bool = False, **kwargs) numpy.ndarray ¶
Compute per-class derivatives w.r.t. x.
- Return type
ndarray
- Parameters
x (
ndarray
) – Sample input with shape as expected by the model.label – Index of a specific per-class derivative. If an integer is provided, the gradient of that class output is computed for all samples. If multiple values as provided, the first dimension should match the batch size of x, and each value will be used as target for its corresponding sample in x. If None, then gradients for all classes will be computed for each sample.
training_mode (
bool
) – True for model set to training mode and ‘False for model set to evaluation mode.
- Returns
Array of gradients of input features w.r.t. each class in the form (batch_size, nb_classes, input_shape) when computing for all classes, otherwise shape becomes (batch_size, 1, input_shape) when label parameter is specified.
- property clip_values: Optional[CLIP_VALUES_TYPE]¶
Return the clip values of the input samples.
- Returns
Clip values (min, max).
- clone_for_refitting() art.estimators.classification.tensorflow.TensorFlowV2Classifier ¶
Create a copy of the classifier that can be refit from scratch. Will inherit same architecture, optimizer and initialization as cloned model, but without weights.
- Returns
new estimator
- compute_loss(x: Union[numpy.ndarray, tf.Tensor], y: Union[numpy.ndarray, tf.Tensor], reduction: str = 'none', training_mode: bool = False, **kwargs) numpy.ndarray ¶
Compute the loss.
- Return type
ndarray
- Parameters
x – Sample input with shape as expected by the model.
y – Target values (class labels) one-hot-encoded of shape (nb_samples, nb_classes) or indices of shape (nb_samples,).
reduction (
str
) – Specifies the reduction to apply to the output: ‘none’ | ‘mean’ | ‘sum’. ‘none’: no reduction will be applied ‘mean’: the sum of the output will be divided by the number of elements in the output, ‘sum’: the output will be summed.training_mode (
bool
) – True for model set to training mode and ‘False for model set to evaluation mode.
- Returns
Array of losses of the same shape as x.
- compute_losses(x: Union[numpy.ndarray, tf.Tensor], y: Union[numpy.ndarray, tf.Tensor], reduction: str = 'none') Dict[str, Union[numpy.ndarray, tf.Tensor]] ¶
Compute all loss components.
- Return type
Dict
- Parameters
x – Sample input with shape as expected by the model.
y – Target values (class labels) one-hot-encoded of shape (nb_samples, nb_classes) or indices of shape (nb_samples,).
reduction (
str
) – Specifies the reduction to apply to the output: ‘none’ | ‘mean’ | ‘sum’. ‘none’: no reduction will be applied ‘mean’: the sum of the output will be divided by the number of elements in the output, ‘sum’: the output will be summed.
- Returns
Dictionary of loss components.
- fit(*args, **kwargs)¶
Fit the classifier on the training set (x, y).
- Parameters
x – Training data.
y – Labels, one-hot-encoded of shape (nb_samples, nb_classes) or index labels of shape (nb_samples,).
batch_size – Size of batches.
nb_epochs – Number of epochs to use for training.
kwargs – Dictionary of framework-specific arguments. This parameter is not currently supported for TensorFlow and providing it takes no effect.
- fit_generator(generator: DataGenerator, nb_epochs: int = 20, **kwargs) None ¶
Fit the classifier using the generator that yields batches as specified.
- Parameters
generator – Batch generator providing (x, y) for each epoch. If the generator can be used for native training in TensorFlow, it will.
nb_epochs (
int
) – Number of epochs to use for training.kwargs – Dictionary of framework-specific arguments. This parameter is not currently supported for TensorFlow and providing it takes no effect.
- get_activations(x: numpy.ndarray, layer: Union[int, str], batch_size: int = 128, framework: bool = False) Optional[numpy.ndarray] ¶
Return the output of the specified layer for input x. layer is specified by layer index (between 0 and nb_layers - 1) or by name. The number of layers can be determined by counting the results returned by calling layer_names.
- Parameters
x (
ndarray
) – Input for computing the activations.layer – Layer for computing the activations.
batch_size (
int
) – Batch size.
- Returns
The output of layer, where the first dimension is the batch size corresponding to x.
- get_params() Dict[str, Any] ¶
Get all parameters and their values of this estimator.
- Returns
A dictionary of string parameter names to their value.
- property input_shape: Tuple[int, ...]¶
Return the shape of one input sample.
- Returns
Shape of one input sample.
- property layer_names: Optional[List[str]]¶
Return the hidden layers in the model, if applicable.
- Returns
The hidden layers in the model, input and output layers excluded.
Warning
layer_names tries to infer the internal structure of the model. This feature comes with no guarantees on the correctness of the result. The intended order of the layers tries to match their order in the model, but this is not guaranteed either.
- loss_gradient(x: Union[numpy.ndarray, tf.Tensor], y: Union[numpy.ndarray, tf.Tensor], training_mode: bool = False, **kwargs) Union[numpy.ndarray, tf.Tensor] ¶
Compute the gradient of the loss function w.r.t. x.
- Parameters
x – Sample input with shape as expected by the model.
y – Correct labels, one-vs-rest encoding.
training_mode (
bool
) – True for model set to training mode and ‘False for model set to evaluation mode.
- Returns
Array of gradients of the same shape as x.
- property loss_object: tf.keras.losses.Loss¶
Return the loss function.
- Returns
The loss function.
- property model¶
Return the model.
- Returns
The model.
- property nb_classes: int¶
Return the number of output classes.
- Returns
Number of classes in the data.
- predict(*args, **kwargs)¶
Perform prediction for a batch of inputs.
- Parameters
x – Input samples.
batch_size – Size of batches.
training_mode – True for model set to training mode and ‘False for model set to evaluation mode.
- Returns
Array of predictions of shape (nb_inputs, nb_classes).
- reset() None ¶
Resets the weights of the classifier so that it can be refit from scratch.
- save(filename: str, path: Optional[str] = None) None ¶
Save a model to file in the format specific to the backend framework. For TensorFlow, .ckpt is used.
- Parameters
filename (
str
) – Name of the file where to store the model.path – Path of the folder where to store the model. If no path is specified, the model will be stored in the default data location of the library ART_DATA_PATH.
- set_params(**kwargs) None ¶
Take a dictionary of parameters and apply checks before setting them as attributes.
- Parameters
kwargs – A dictionary of attributes.
- property train_step: Callable¶
Return the function that applies a gradient update to the trainable variables.
- Returns
The function that applies a gradient update to the trainable variables.
Ensemble Classifier¶
- class art.estimators.classification.EnsembleClassifier(classifiers: List[art.estimators.classification.classifier.ClassifierNeuralNetwork], classifier_weights: Optional[Union[list, numpy.ndarray]] = None, channels_first: bool = False, clip_values: Optional[CLIP_VALUES_TYPE] = None, preprocessing_defences: Optional[Union[Preprocessor, List[Preprocessor]]] = None, postprocessing_defences: Optional[Union[Postprocessor, List[Postprocessor]]] = None, preprocessing: PREPROCESSING_TYPE = (0.0, 1.0))¶
Class allowing to aggregate multiple classifiers as an ensemble. The individual classifiers are expected to be trained when the ensemble is created and no training procedures are provided through this class.
- __init__(classifiers: List[art.estimators.classification.classifier.ClassifierNeuralNetwork], classifier_weights: Optional[Union[list, numpy.ndarray]] = None, channels_first: bool = False, clip_values: Optional[CLIP_VALUES_TYPE] = None, preprocessing_defences: Optional[Union[Preprocessor, List[Preprocessor]]] = None, postprocessing_defences: Optional[Union[Postprocessor, List[Postprocessor]]] = None, preprocessing: PREPROCESSING_TYPE = (0.0, 1.0)) None ¶
Initialize a
EnsembleClassifier
object. The data range values and colour channel index have to be consistent for all the classifiers in the ensemble.- Parameters
classifiers (
List
) – List ofClassifier
instances to be ensembled together.classifier_weights – List of weights, one scalar per classifier, to assign to their prediction when aggregating results. If None, all classifiers are assigned the same weight.
channels_first (
bool
) – Set channels first or last.clip_values – Tuple of the form (min, max) of floats or np.ndarray representing the minimum and maximum values allowed for features. If floats are provided, these will be used as the range of all features. If arrays are provided, each value will be considered the bound for a feature, thus the shape of clip values needs to match the total number of features.
preprocessing_defences – Preprocessing defence(s) to be applied by the classifier. Not applicable in this classifier.
postprocessing_defences – Postprocessing defence(s) to be applied by the classifier.
preprocessing – Tuple of the form (subtrahend, divisor) of floats or np.ndarray of values to be used for data preprocessing. The first value will be subtracted from the input. The input will then be divided by the second one. Not applicable in this classifier.
- property channels_first: bool¶
- Returns
Boolean to indicate index of the color channels in the sample x.
- class_gradient(x: numpy.ndarray, label: Optional[Union[int, List[int]]] = None, training_mode: bool = False, raw: bool = False, **kwargs) numpy.ndarray ¶
Compute per-class derivatives w.r.t. x.
- Return type
ndarray
- Parameters
x (
ndarray
) – Sample input with shape as expected by the model.label – Index of a specific per-class derivative. If None, then gradients for all classes will be computed.
training_mode (
bool
) – True for model set to training mode and ‘False for model set to evaluation mode.raw (
bool
) – Return the individual classifier raw outputs (not aggregated).
- Returns
Array of gradients of input features w.r.t. each class in the form (batch_size, nb_classes, input_shape) when computing for all classes, otherwise shape becomes (batch_size, 1, input_shape) when label parameter is specified. If raw=True, an additional dimension is added at the beginning of the array, indexing the different classifiers.
- property classifier_weights: numpy.ndarray¶
Return the list of classifier weights to assign to their prediction when aggregating results.
- Returns
The list of classifier weights to assign to their prediction when aggregating results.
- property classifiers: List[art.estimators.classification.classifier.ClassifierNeuralNetwork]¶
Return the Classifier instances that are ensembled together.
- Returns
Classifier instances that are ensembled together.
- property clip_values: Optional[CLIP_VALUES_TYPE]¶
Return the clip values of the input samples.
- Returns
Clip values (min, max).
- compute_loss(x: numpy.ndarray, y: numpy.ndarray, **kwargs) numpy.ndarray ¶
Compute the loss of the neural network for samples x.
- Parameters
x (
ndarray
) – Samples of shape (nb_samples, nb_features) or (nb_samples, nb_pixels_1, nb_pixels_2, nb_channels) or (nb_samples, nb_channels, nb_pixels_1, nb_pixels_2).y (
ndarray
) – Target values (class labels) one-hot-encoded of shape (nb_samples, nb_classes) or indices of shape (nb_samples,).
- Returns
Loss values.
- Return type
Format as expected by the model
- fit(*args, **kwargs)¶
Fit the classifier on the training set (x, y). This function is not supported for ensembles.
- Parameters
x – Training data.
y – Target values (class labels) one-hot-encoded of shape (nb_samples, nb_classes).
batch_size – Size of batches.
nb_epochs – Number of epochs to use for training.
kwargs – Dictionary of framework-specific arguments.
- Raises
NotImplementedException – This method is not supported for ensembles.
- fit_generator(generator: DataGenerator, nb_epochs: int = 20, **kwargs) None ¶
Fit the classifier using the generator that yields batches as specified. This function is not supported for ensembles.
- Parameters
generator – Batch generator providing (x, y) for each epoch. If the generator can be used for native training in Keras, it will.
nb_epochs (
int
) – Number of epochs to use for trainings.kwargs – Dictionary of framework-specific argument.
- Raises
NotImplementedException – This method is not supported for ensembles.
- get_activations(x: numpy.ndarray, layer: Union[int, str], batch_size: int = 128, framework: bool = False) numpy.ndarray ¶
Return the output of the specified layer for input x. layer is specified by layer index (between 0 and nb_layers - 1) or by name. The number of layers can be determined by counting the results returned by calling layer_names. This function is not supported for ensembles.
- Return type
ndarray
- Parameters
x (
ndarray
) – Input for computing the activations.layer – Layer for computing the activations.
batch_size (
int
) – Size of batches.framework (
bool
) – If true, return the intermediate tensor representation of the activation.
- Returns
The output of layer, where the first dimension is the batch size corresponding to x.
- Raises
NotImplementedException – This method is not supported for ensembles.
- get_params() Dict[str, Any] ¶
Get all parameters and their values of this estimator.
- Returns
A dictionary of string parameter names to their value.
- property input_shape: Tuple[int, ...]¶
Return the shape of one input sample.
- Returns
Shape of one input sample.
- property layer_names: List[str]¶
Return the hidden layers in the model, if applicable. This function is not supported for ensembles.
- Returns
The hidden layers in the model, input and output layers excluded.
- Raises
NotImplementedException – This method is not supported for ensembles.
- loss_gradient(x: numpy.ndarray, y: numpy.ndarray, training_mode: bool = False, raw: bool = False, **kwargs) numpy.ndarray ¶
Compute the gradient of the loss function w.r.t. x.
- Return type
ndarray
- Parameters
x (
ndarray
) – Sample input with shape as expected by the model.y (
ndarray
) – Target values (class labels) one-hot-encoded of shape (nb_samples, nb_classes) or indices of shape (nb_samples,).training_mode (
bool
) – True for model set to training mode and ‘False for model set to evaluation mode.raw (
bool
) – Return the individual classifier raw outputs (not aggregated).
- Returns
Array of gradients of the same shape as x. If raw=True, shape becomes [nb_classifiers, x.shape].
- property model¶
Return the model.
- Returns
The model.
- property nb_classes: int¶
Return the number of output classes.
- Returns
Number of classes in the data.
- predict(*args, **kwargs)¶
Perform prediction for a batch of inputs. Predictions from classifiers should only be aggregated if they all have the same type of output (e.g., probabilities). Otherwise, use raw=True to get predictions from all models without aggregation. The same option should be used for logits output, as logits are not comparable between models and should not be aggregated.
- Parameters
x – Input samples.
batch_size – Size of batches.
raw – Return the individual classifier raw outputs (not aggregated).
- Returns
Array of predictions of shape (nb_inputs, nb_classes), or of shape (nb_classifiers, nb_inputs, nb_classes) if raw=True.
- save(filename: str, path: Optional[str] = None) None ¶
Save a model to file in the format specific to the backend framework. This function is not supported for ensembles.
- Parameters
filename (
str
) – Name of the file where to store the model.path – Path of the folder where to store the model. If no path is specified, the model will be stored in the default data location of the library ART_DATA_PATH.
- Raises
NotImplementedException – This method is not supported for ensembles.
- set_params(**kwargs) None ¶
Take a dictionary of parameters and apply checks before setting them as attributes.
- Parameters
kwargs – A dictionary of attributes.
Scikit-learn Classifier Classifier¶
- art.estimators.classification.SklearnClassifier(model: sklearn.base.BaseEstimator, clip_values: Optional[CLIP_VALUES_TYPE] = None, preprocessing_defences: Optional[Union[Preprocessor, List[Preprocessor]]] = None, postprocessing_defences: Optional[Union[Postprocessor, List[Postprocessor]]] = None, preprocessing: PREPROCESSING_TYPE = (0.0, 1.0), use_logits: bool = False) ScikitlearnClassifier ¶
Create a Classifier instance from a scikit-learn Classifier model. This is a convenience function that instantiates the correct class for the given scikit-learn model.
- Parameters
model – scikit-learn Classifier model.
clip_values – Tuple of the form (min, max) representing the minimum and maximum values allowed for features.
preprocessing_defences – Preprocessing defence(s) to be applied by the classifier.
postprocessing_defences – Postprocessing defence(s) to be applied by the classifier.
preprocessing – Tuple of the form (subtrahend, divisor) of floats or np.ndarray of values to be used for data preprocessing. The first value will be subtracted from the input. The input will then be divided by the second one.
GPy Gaussian Process Classifier¶
- class art.estimators.classification.GPyGaussianProcessClassifier(model: Optional[GPClassification] = None, clip_values: Optional[CLIP_VALUES_TYPE] = None, preprocessing_defences: Optional[Union[Preprocessor, List[Preprocessor]]] = None, postprocessing_defences: Optional[Union[Postprocessor, List[Postprocessor]]] = None, preprocessing: PREPROCESSING_TYPE = (0.0, 1.0))¶
Wrapper class for GPy Gaussian Process classification models.
- __init__(model: Optional[GPClassification] = None, clip_values: Optional[CLIP_VALUES_TYPE] = None, preprocessing_defences: Optional[Union[Preprocessor, List[Preprocessor]]] = None, postprocessing_defences: Optional[Union[Postprocessor, List[Postprocessor]]] = None, preprocessing: PREPROCESSING_TYPE = (0.0, 1.0)) None ¶
Create a Classifier instance GPY Gaussian Process classification models.
- Parameters
model – GPY Gaussian Process Classification model.
clip_values – Tuple of the form (min, max) representing the minimum and maximum values allowed for features.
preprocessing_defences – Preprocessing defence(s) to be applied by the classifier.
postprocessing_defences – Postprocessing defence(s) to be applied by the classifier.
preprocessing – Tuple of the form (subtrahend, divisor) of floats or np.ndarray of values to be used for data preprocessing. The first value will be subtracted from the input. The input will then be divided by the second one.
- class_gradient(x: numpy.ndarray, label: Optional[Union[int, List[int]]] = None, eps: float = 0.0001, **kwargs) numpy.ndarray ¶
Compute per-class derivatives w.r.t. x.
- Return type
ndarray
- Parameters
x (
ndarray
) – Sample input with shape as expected by the model.label – Index of a specific per-class derivative. If an integer is provided, the gradient of that class output is computed for all samples. If multiple values as provided, the first dimension should match the batch size of x, and each value will be used as target for its corresponding sample in x. If None, then gradients for all classes will be computed for each sample.
eps (
float
) – Fraction added to the diagonal elements of the input x.
- Returns
Array of gradients of input features w.r.t. each class in the form (batch_size, nb_classes, input_shape) when computing for all classes, otherwise shape becomes (batch_size, 1, input_shape) when label parameter is specified.
- property clip_values: Optional[CLIP_VALUES_TYPE]¶
Return the clip values of the input samples.
- Returns
Clip values (min, max).
- compute_loss(x: numpy.ndarray, y: numpy.ndarray, **kwargs) numpy.ndarray ¶
Compute the loss of the estimator for samples x.
- Parameters
x (
ndarray
) – Input samples.y (
ndarray
) – Target values.
- Returns
Loss values.
- Return type
Format as expected by the model
- fit(*args, **kwargs)¶
Fit the classifier on the training set (x, y).
- Parameters
x – Training data. Not used, as given to model in initialized earlier.
y – Target values (class labels) one-hot-encoded of shape (nb_samples, nb_classes).
- get_params() Dict[str, Any] ¶
Get all parameters and their values of this estimator.
- Returns
A dictionary of string parameter names to their value.
- property input_shape: Tuple[int, ...]¶
Return the shape of one input sample.
- Returns
Shape of one input sample.
- loss_gradient(x: numpy.ndarray, y: numpy.ndarray, **kwargs) numpy.ndarray ¶
Compute the gradient of the loss function w.r.t. x.
- Return type
ndarray
- Parameters
x (
ndarray
) – Sample input with shape as expected by the model.y (
ndarray
) – Target values (class labels) one-hot-encoded of shape (nb_samples, nb_classes) or indices of shape (nb_samples,).
- Returns
Array of gradients of the same shape as x.
- property model¶
Return the model.
- Returns
The model.
- property nb_classes: int¶
Return the number of output classes.
- Returns
Number of classes in the data.
- predict(*args, **kwargs)¶
Perform prediction for a batch of inputs.
- Parameters
x – Input samples.
logits – True if the prediction should be done without squashing function.
- Returns
Array of predictions of shape (nb_inputs, nb_classes).
- predict_uncertainty(x: numpy.ndarray) numpy.ndarray ¶
Perform uncertainty prediction for a batch of inputs.
- Return type
ndarray
- Parameters
x (
ndarray
) – Input samples.- Returns
Array of uncertainty predictions of shape (nb_inputs).
- save(filename: str, path: Optional[str] = None) None ¶
Save a model to file in the format specific to the backend framework.
- Parameters
filename (
str
) – Name of the file where to store the model.path – Path of the folder where to store the model. If no path is specified, the model will be stored in the default data location of the library ART_DATA_PATH.
- set_params(**kwargs) None ¶
Take a dictionary of parameters and apply checks before setting them as attributes.
- Parameters
kwargs – A dictionary of attributes.